Formation of a Uranium Trithiocarbonate Complex via the Nucleophilic Addition of a Sulfide-Bridged Uranium Complex to $CS₂$

Oanh P. Lam,† Ludovic Castro,‡,§ Boris Kosog,† Frank W. Heinemann,† Laurent Maron,‡,§,[⊥] and Karsten Meyer*,†

 † Department of Chemi[stry](#page-2-0) and Pharmacy, Inorganic Chemistry, University Erlangen—Nuremberg, Egerlandstraße 1, D-91058 Erlangen, Germany

‡ Universitéde Toulouse, INSA, UPS, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France § CNRS, LPCNO, F-31077 Toulouse, France

S Supporting Information

ABSTRACT: The uranium(IV)/uranium(IV) μ -sulfide complex $[\{((\text{Ad}ArO)_{3}N)U\}_{2}(\mu-S)]$ reacts with CS_{2} to form the trithiocarbonate-bridged complex $[\{((\text{Ad} ArO)_{3}N)U\}_{2}(\mu-\kappa^{2}:\kappa^{2}-CS_{3})]$. The trithiocarbonate complex can alternatively be formed in low yields from low-valent $[((A^dArO)₃N)U(DME)]$ through the reductive cleavage of CS_2 .

Reductive cleavage of CO_2 and CS_2 to form carbonates and trithiocarbonates has been well-documented for transition matel complexes $1-7$ Mith respect to follower coordination tion-metal complexes.1−⁷ With respect to f-element coordination chemistry, however, there are only three reports of carbonate formation [fr](#page-2-0)o[m](#page-2-0) reductive splitting of ${CO_2}^{8-10}$ and, to the best of our knowledge, no records of trithiocarbonate formation from reductive splitting of $CS₂$. For the [most](#page-2-0) part, the mechanisms and intermediates of carbonate formation remain unclear. A couple of pathways have been proposed in the transformation of CO_2^{\sim} to CO_3^{\sim} . One involves the reductive cleavage of $CO₂$ to form oxo complexes with concomitant evolution of CO, followed by the addition of 1 equiv of CO_2 ¹⁰ Another route involves transformation of the initially formed reductive coupling product, oxalate, with subsequent elimi[na](#page-2-0)tion of CO.¹⁰ As for trithiocarbonate formation from disproportionation of CS_2 , a mechanism has not been proposed.

Recently, we reported the formation of a carbonate-bridged uranium complex through the reductive cleavage of $CO₂$ by the highly reactive uranium(III) complex $[((A^dArO)₃N)U(DME)]$ (1) and verified that the reaction proceeds via the oxo-bridged intermediate $[\{((\text{Ad}ArO)_{3}N)U\}_{2}(\mu-O)]$ (5).⁸ Oxo-bridged complexes of the lanthanide and actinide metals are often very stable compounds and do not exhibit f[urt](#page-2-0)her reactivity. Compared to such an inert complex, $[\{((t$ ^{-Bu}ArO)₃tacn)U}₂- $(\mu$ -O)],¹¹ the surprisingly high reactivity of 5 is attributed to the chelating ligand's less encumbering and flexible nature, which a[llo](#page-2-0)ws substrate access to the highly nucleophilic oxygen. From these observations, one would surmise that 1 would react similarly with CS_2 . However, the reaction of 1 with CS_2 yields predominantly the tetrathiooxalate reductive coupling product $[(((^{Ad}ArO)_{3}N)U]_{2}(\mu-\kappa^{2}:\kappa^{2}-C_{2}S_{4})]$ (4),¹² with the trithiocarbonate complex $[\{((\text{Ad} A rO)_{3}N)U\}_{2}(\mu$ - $\kappa^{2}:\kappa^{2}-CS_{3})]$ (3-DME)

forming as a byproduct in only 20% yield. Alternatively, the trithiocarbonate complex 3-DME can be synthesized analytically pure from the reaction of $[\{((\text{Ad}ArO)_{3}N)U\}_{2}(\mu-S)]$ (2) with CS_2 . The possible formation pathways of this complex from 1 and CS_2 will be rationalized via density functional theory (DFT) studies.

Herein, we report the synthesis and characterization of the only example of a trithiocarbonate complex containing an f element.

The trivalent complex 1 engages in one- and two-electron reduction of CS_2 , giving rise to two different products (Scheme 1). The purple precipitate was characterized as the tetrathiooxalate complex 4^{12} and forms in approximately 80% yield. T[he](#page-1-0) mother liquor of this reaction contains the orange trithiocarbonate com-plex 3-D[ME](#page-2-0) in 20% yield and was identified through ¹H NMR spectroscopy. Alternatively, the deep-red-orange trithiocarbonate complex 3-DME can be synthesized in excellent yields directly from the nucleophilic addition of $CS₂$ to the sulfide-bridged complex 2. ¹³ From this reaction, a red-orange solid was isolated in 89% yield and characterized as the uranium trithiocarbonate complex 3-DM[E](#page-2-0) (Scheme 2).

Single crystals of 3-DME suitable for X-ray diffraction (XRD) studies [we](#page-1-0)re obtained by allowing a concentrated solution of 1,2-dimethoxyethane (DME) to stand at room temperature. The molecular structure reveals the dianionic trithiocarbonate ligand bound in a μ - $\kappa^2(S,S')$: $\kappa^2(S,S'')$ fashion to the two $U(IV)$ centers (Figure 1). This binding mode is in contrast to the uranium carbonate complex $[\{((\text{Ad} ArO)_{3}N)U\}_{2}^{-1}]$ $(\mu-\eta^1:\kappa^2$ -CO<[s](#page-1-0)ub>3</sub>)], which features the CO₃^{2–} ligand bound in a μ-η¹(O):κ²(O′,O″) fashion (Figure 2). The U1−O_{avg} and U2− O_{avg} bond distances of 2.147 and 2.133 Å remain unaltered from those of the bridging sulfid[e](#page-1-0) complex 2. Likewise, the U1−N1 and U2−N2 distances of 2.587(3) and 2.625(3) Å are as expected. The U1−S1 and U2−S1 distances [3.096(2) and 3.130(2) Å] are significantly longer than the U1−S2 and U2− S3 distances [2.872(2) and 2.868(2) Å]. The C−S bond lengths of 1.724(4), 1.707(4), and 1.710(4) Å are nearly equivalent, suggesting that there is complete delocalization of electrons over the μ -CS₃^{2–} unit.

Received: November 23, 2011 Published: December 21, 2011 Scheme 1. Formation of the Uranium Trithiocarbonate Complex 3-DME from the Reductive Cleavage of CS₂ in Low Yields (20% Yield, Bottom) and the Major Product, the Tetrathiooxalate Complex 4^{12} (80% Yield, Top), Presumably Formed through a U(IV) radical anionic CS2 $^{\bullet -}$ Intermediate Complex $[1\text{-CS}_2]^{\ddagger}$

Scheme 2. Formation of the Uranium Trithiocarbonate Complex 3-DME through the Nucleophilic Addition of the Uranium Bridging Sulfide Complex 2 to CS_2

The variable-temperature SQUID magnetization data are characteristic of $U(IV)$ centers and also very similar to those of the uranium carbonate complex $[\{((\text{Ad} ArO)_{3}N)U\}_{2}(\mu-\eta^{1}:\text{Ad} I_{\mu}P_{\mu}].$ $(\kappa^2$ -CO₃)],⁸ where magnetic moments of 3.49 μ_B at 300 K and 0.40 μ_B at 2 K are observed (see the Supporting Information). Overall, [th](#page-2-0)e magnetization data support tetravalent uranium centers for complex 3-DME.

The preference of 1 to undergo d[isproportionation](#page-2-0) [of](#page-2-0) $CO₂$ $CO₂$ over CS_2 may be explained by examining the relative proclivity at which the uranium oxo-bridged complex versus the uranium sulfide-bridged complex (2) is formed. Hence, DFT studies were performed on the uranium oxo-bridged complex and 2. The reaction profiles leading to the oxo-bridged uranium complex and 2 are shown in Figure 3. The formation of intermediate species A, a uranium(IV)/uranium(IV) complex bridged by a CS_2^2 ligand, $[\{U\}_2(\mu$ - $CS_2^2)$], is exergonic by 17.3 kcal/mol, while formation of the anal[og](#page-2-0)ous intermediate C, $[\{U\}_2]$ $(\mu$ -CO₂²⁻)], is exergonic by 22.8 kcal/mol. The transition state species B and D represent the C−S and C−O bond-breaking processes, with optimized structures of $[(CS)U(\mu-S^2)U]^{\ddagger}$ and $[(CO)U(\mu-O^{2-})U]^{\ddagger}$, respectively. Transition states **B** and **D** have activation barriers of 24.4 and 22.3 kcal/mol, respectively. While the formation of oxo-bridged species 5 is exergonic (31.6

Figure 1. Molecular structure of the uranium trithiocarbonate complex 3-DME (top) and core (bottom). Hydrogen and adamantyl groups have been omitted for clarity. Thermal ellipsoids are at 50% probability level.

Figure 2. μ - $\kappa^2(S,S')$: $\kappa^2(S,S'')$ coordination mode of the trithiocarbonate complex **3-DME** (left) and the μ - η ¹(O): κ^2 (O',O") coordination mode of the carbonate complex $[\{((\text{Ad}ArO)_{3}N)U\}_{2}(\mu-\eta^{1}:\kappa^{2}-CO_{3})]^{8}$ (right).

kcal/mol), the generation of sulfide-bridged species 2 is slightl[y](#page-2-0) endergonic (2.6 kcal/mol). The DFT studies clearly reveal that the formation of CS is not as favorable as that of CO. Carbon

monosulfide is known to be very unstable;¹⁴ however, there have been instances where CS was trapped in situ during reductive disproportionation processes of CS_2 .^{3,5} The driving force for formation of the bridged complex is clearly the large energy gain from the formation of a very stable CO molecule. This driving force is not as strong in disproportionation reactions with CS_2 , and hence only 20% of the uranium trithiocarbonate product 3-DME is observed. An additional contribution to the preference of carbonate generation may also be the formation of two U−O bonds over two U−S bonds. Although, Andersen's report of a uranium sulfide-bridged complex from the reaction of $[(CH_3C₅H₄)₃U⁺THF]$ with COS suggests that the formation of CO versus CS is the main competing driving force rather than the formation of the U−O versus U−S bond.15

Finally, the possibility of the involvement of a mononuclear U=S species, and its subsequent reaction with CS_2 , has also been investigated theoretically. The formation of the mononuclear complex is endergonic (by 20 kcal/mol) with respect to the U−S−U dinuclear species. Moreover, the transition state of $CS₂$ insertion has also been located and is 16.5 kcal/mol higher in energy than the one found for the U−S−U dimer. Accordingly, this pathway is energetically too demanding and, thus, is unlikely (for the full profile, see the Supporting Information).

However, the independent synthesis and isolation of the sulfide-bridged complex, followed by the reaction with CS_2 , generates the uranium trithiocarbonate complex 3-DME in high yields.

In conclusion, we have shown that the reaction of 1 with CS_2 resulted in the formation of a major product, the uranium tetrathiooxalate complex $4,^{12}$ and a minor product, the uranium trithiocarbonate complex 3-DME. This parallel one- and twoelectron reduction of CS_2 is remarkable in itself, showcasing the versatility of trivalent uranium as a reducing agent. The uranium trithiocarbonate complex can be synthesized in excellent yields by the addition of CS_2 to the sulfide-bridged 2. This process to trithiocarbonate synthesis is unique; no such reaction pathway has been described in the literature. The reactivity of 5 and 2 have now been established. Future studies will focus on mapping the reactivity of related uranium μ -chalcogenides complexes such as $[\{((\text{Ad}ArO)_{3}N)U\}_{2}(\mu-Se)]$ and $[\{((\text{Ad}ArO)_{3}N)U\}_{2}^{-1}]$ $(\mu$ -Te)] and their reactivity toward heteroallenes.

■ ASSOCIATED CONTENT

6 Supporting Information

Synthetic details, SQUID data, electronic absorption spectra, and XRD and DFT details. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORM[ATION](http://pubs.acs.org)

Corresponding Author

*E-mail: kmeyer@chemie.uni-erlangen.de. Tel: +49(0)9131 8527361. Fax: +49(0)9131 8527367.

■ ACK[NOWLEDGMENTS](mailto:kmeyer@chemie.uni-erlangen.de)

The Deutsche Forschungsgemeinschaft (Grants DFG SFB 583 and DFG ME1754/2-1) is gratefully acknowledged for financial support.

■ REFERENCES

(1) Allen, O. R.; Dalgarno, S. J.; Field, L. D. Organometallics 2008, 27, 3328−3330.

(2) Gibson, D. H. Chem. Rev. 1996, 96, 2063−2096.

(3) Li, B.; Tan, X.; Xu, S.; Song, H.; Wang, B. J. Organomet. Chem. 2008, 693, 667−674.

(4) Mace, W. J.; Main, L.; Nicholson, B. K.; Hagyard, M. J. Organomet. Chem. 2002, 664, 288−293.

(5) Campora, J.; Gutierrez, E.; Monge, A.; Palma, P.; Poveda, M. L.; Ruiz, C.; Carmona, E. Organometallics 1994, 13, 1728−1745.

(6) Benson, I. B.; Hunt, J.; Knox, S. A. R.; Oliphant, V. J. Chem. Soc., Dalton Trans. 1978, 1240−1246.

(7) Thiele, G.; Liehr, G.; Lindner, E. J. Organomet. Chem. 1974, 70, 427−435.

(8) Lam, O. P.; Bart, S. C.; Kameo, H.; Heinemann, F. W.; Meyer, K. Chem. Commun. 2010, 46, 3137−3139.

(9) Summerscales, O. T.; Frey, A. S. P.; Cloke, F. G. N.; Hitchcock, P. B. Chem. Commun. 2009, 198−200.

(10) Davies, N. W.; Frey, A. S. P.; Gardiner, M. G.; Wang, J. Chem. Commun. 2006, 4853−4855.

(11) Castro-Rodriguez, I.; Meyer, K. J. Am. Chem. Soc. 2005, 127, 11242−11243.

(12) Lam, O. P.; Heinemann, F. W.; Meyer, K. Angew. Chem., Int. Ed. 2011, 50, 5965−5968.

(13) Lam, O. P.; Heinemann, F. W.; Meyer, K. Chem. Sci. 2011, 2, 1538−1547.

(14) Moltzen, E. K.; Klabunde, K. J.; Senning, A. Chem. Rev. 1988, 88, 391−406.

(15) Brennan, J. G.; Andersen, R. A.; Zalkin, A. Inorg. Chem. 1986, 25, 1761−1765.